
Computer Fundamental
Dr. (Prof) SK Shrivastava, MSc(P U),NET(CSIR-UGC), PhD (DU/NPLJCIC(IGNOU)

cOMPUTER LANGUAGE

MACHINE LANGUAGE
Machine language is a language that a processor understands. Machine language consists of strings of binary numbers (0, 1). 1 stands for the presence of signals Any set of instruction in a machine language can be divided into the following four
categories.

1. Arithmetic Add, subtract, multiply, divide.
2. Control- load, store, jumpP
3 input output- Read and write
4. Direct use- Start, halt and end.

Machine language instructions are represented by binary numbers i.e, sequencing
consists of 0's 81's. For example, the binary sequence 001010011010 could
represent a 12 bit machine language instruction. The instruction is divided into two
parts, operation code (or op code) and an operand.

Op code operand
10011010 10

This op code specifies the operations such as add, multiply, etc and the operand
is the address of the data item that is to be operated upon.
Thus, while using a machine language, we have to remember the code numbers
for the operations and also keep tract of the addresses of all the data items.
Hence, machine language is highly complicated and subject to error. Also, the
programs written in machine language are machine dependent. That has been
developed for a particular machine can not be run on another machine.
The program written in machine language are also called object program.

For a particular computer, the following operation codes are used for
different functions.

0001 Addition
Subtraction
Multiply
Division

0010
0011
0100
0101
0110
0111

Place numbers from central memory in accumulator.
Place content of accumulator in memory.
Perform input from accumulator A to output device.

ADVANTAGE
1. Machine language instruction is directly executed, as there is no compilation

translation procedure involved

Computer Fundamental
Dr. (Prof) SK Shrivastava, MSc(P U),NET(CSIR-UGC). PhD. (DU/NPL)CIC(IGNOU)

2. Machine language makes efficient use of computers memory space 3. Shorter execution time is required for machine language program 4. This language is suitable for computers having limited memory

Disadvantage
1. Machine language is a machine dependent language.
2. Instructions of this language are written in binary language. Since it is very difficult to

remember the codes, this leads to error.
3. During modification, the address of al the instructions have to be changed. It

becomes a difficult task.
4. Remembering the address of all the storage locations isa very difficult task.
5. High programming skill is required to do programming in machine language.

ASSEMBLY LANGUAGE
The program written in the symbolic language is called source program. This source

programacts as an input to the assembler, which is loaded in the computer memory.
Then the assembler performs the translation and generates the equivalent machine
code which is called object code.

The symbolic language is called as low level language because it is a designed for a
particular machine. t can not be developed without knowing the size of the control
memory and the size of the location word.

The assembly language compromise between a high level language and a machine
language developed in 1995. These languages permit the use of alpha numeric
operation codes and addresses. The computer operating system automatically
translates these symbols with the help of symbolic equivalence table in order to obtain
the numeric code that it needs to execute the program. This is also called symbolic
machine language.

MACHINE CODE ASSEMBLY LANGUAGE

Machine code Assembly language (mnemonic)

0000 LDA Load accumulator contents of specific address.

0001 STA Store accumulate contents in specific address.

ADD ADD contents of specific address to the

accumulator contents.
Subtract contents of the specific address from the

0010

0011
accumulator

0100 AND-Perform an AND operation as contents of accumulator.

Computer Fundamental
Dr (Prof) SK Shrivastava, MSc(P U), NET(CSIR-UGC), PhD (DUNPL)CIC(IGNOU)

0101 ORA- Perform an OR operation as contents of accumulator

0110 JPU-Jump Unconditionally to specified address.

1110 HLT- Stop the program

1111 IOP-Perform specified output operation.

NOT- Perform the NOT operation.

JAZ- Jump to specific address if accumulator contents are
1101

0111
zero

JAN- Jump to specific address if accumulator contents are

not zero.
SAI- Swap the contents of the accumulator with the contents

of the index register

1000

1011

HIGH LEVEL LANGUAGE

1. They are easier to learn than symbolic language.
2. They required less time to write.

3. They are easier to maintain.

4
5. The programs written in such a language can be executed in any computer.
6. Four or five low level instructions are reduced to a simple high level language

They required better documentation.

5.

statement.

EXAMPLE
1. BASIC (1965)

Beginners All purpose symbolic instruction code, Gemmy & Kuntz

2. FORTRAN 3. COBOL 4.PASCAL

High level language may be further subdivided into procedure oriented language,
problem oriented language and interactive programming language.
EXAMPLE
(1)COBOL is a procedure oriented language which is used extensively in

business application.

(2)FORTRAN

PROBLEM ORIENTED LANGUAGE

Computer Fundamental
Dr. (Prof) S K. Shrivastava, MSc{P U.), NET(CSIR-UGC), PhD. (DUNPLJCIC(IGNOU)

It is attempt to solve processing requirement several programming effort allowing
the user focus on what results are designed rather than on the individual steps
needed to get those results.

Example-RPG (Report program generator)

INTERATIVE PROGRAMING LANGUAGGE

It allows the user to interact with program in conversational fashion.

EXAMPLE - CAD& CAM, BASIC PASCAL.

GENERAL PURPOSE LANGUAGE (e.g. basic & Pascal) is suitable for any

application

SPECIAL PURPOSE LANGUAGE (e. g. COBOL) is suitable for special

application areas.

for

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

